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number of experimentally derived magnitudes of the 
normalized structure factors describing the simplified 
structure (non-vibrating point atoms). The second 
source, also necessary for the solution of the phase 
problem, is concealed in the function form of the 
distributions of seminvariants. Unlike all the preced- 
ing methods, the distribution fit proposed here makes 
full use of structure information contained in the 
seminvariant probability distribution functions and 
so is expected to be more powerful and efficient. The 
procedure outlined in this paper has been treated 
only from a general point of view. The optimal choice 
of the theoretical distribution functions, the determi- 
nation of the generalized coordinates and the selec- 
tion of seminvariants for the test so as to ensure an 
economic and reliable determination of the correct 
set of phases is discussed in the following papers 
(Ha~ek, 1984b, c). 

The author thanks Dr K. Huml for valuable com- 
ments on this work. 
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A b s t r a c t  

The proposed method of determination of the correct 
set of phases of structure factors enables in principle 
full benefit to be taken of a priori structure informa- 
tion contained in the probability distributions of 
seminvariants. Unlike the direct comparison of the 
probability distributions discussed in the preceding 
paper, the method discussed here, by neglecting the 
moments of higher orders, allows concentration on 
the main characteristics of the distributions taken for 
the test. The basic principle of the method for determi- 
nation of the correct set of phases using the fit between 
moments of the theoretical and trial distributions has 
been widely used in different modifications. However, 
most of these figures of merit compare only first 
distribution moments. In many cases this results in 
insufficient discriminating ability. The comparison of 

* Part II: Ha~ek (1984b). 
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the second moments raises the effectiveness of these 
methods and may be useful in the last stage of the 
phase-problem solution. The utilization of moments 
of higher orders may be dangerous, especially using 
the global coefficient of moments fitting and in the 
case of a small number of seminvariants (unreliable 
determination of higher moments). The method of 
successive comparison of moments of different orders 
seems to be more reliable and economical. It permits 
the survey of a large number of potential solutions, 
thus increasing the likelihood that a correct solution 
is included. From the economic point of view, it is 
convenient to include only those regions of magni- 
tudes and those distribution types which have not 
been used in the preceding step of the search of the 
trial solutions. It explains the excellent results 
obtained using figures of merit based on the special 
seminvariant types, e.g. NQEST, NQC [De Titta, 
Edmonds, Langs & Hauptman (1975). Acta Cryst. 
A31,472-479; Schenk (1974). Acta Cryst. A30, 477- 
481]. 
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1. Introduction 

Hagek (1984b) presents a general method for the 
determination of a correct set of structure-factor 
phases based on a direct comparison of function 
values of theoretical and trial probability distributions 
of seminvariants. However, both probability distribu- 
tions* can be uniquely described by means of their 
characteristic functions. Thus also a comparison of 
the corresponding moments of the theoretical and 
trial distributions can serve as a criterion of correct- 
ness of the calculated set of phases. The thoroughness 
of the description of both distributions depends on 
the order of moments used, on the reliability of their 
determination and on the fineness of partitioning of 
the m-dimensional space into regions of magnitude. 
It seems that, compared with the method of the direct 
distribution fitting (paper II), the method of moments 
may have some advantages in the case of an 
insufficient number of seminvariants for statistical 
treatment. It enables us to concentrate attention only 
on the main distribution characteristics contained in 
the two first moments. This idea leads to very simple 
criteria for finding the correct set of phases, still 
keeping the discrimination of the test in a satisfactory 
range. As is shown in § 4.2, both methods coincide 
in the case of seminvariants, which owing to the 
crystallographic symmetry may assume only two 
values (e.g. centric structure seminvariants). 

The theoretical and empirical distributions may be 
compared either by using moments with respect to 
zero, or by means of central moments and cumulants. 
The distribution moments with respect to zero are 
primary, but, if problems arise, then the variance and 
standardized cumulants, giving a better view of the 
differences between the distributions, are to be pre- 
ferred. 

2. Moments of the empirical distribution of 
seminvariants 

For reasons explained in § 2 of paper II, it is con- 
venient to replace in our calculations the overall 
(m +l)-dimensional empirical probability distribu- 
tion pemp(af y, R I , . . .  , Rm) by a function composed of 
a number of one-dimensional conditional probability 
distributions P~mP(~lRl , . . . ,Rm) defined for the 
individual regions of magnitudes. 

The distribution moments (with respect to zero) are 
calculated using the relational 

f r e m p  ~-. r 
o Nj-~E ~ , ,  (I) 

I 

F o r  de f in i t ions  o f  t he  t rue ,  tr ial ,  e m p i r i c a l  a n d  t h e o r e t i c a l  
p r o b a b i l i t y  d i s t r i bu t i ons  o f  s e m i n v a r i a n t s ,  a priori s t r u c t u r e  in fo r -  
m a t i o n  a n d  the  s e m i n v a r i a n t  see  p r e c e d i n g  p a p e r s  (Ha~ek ,  
1984"a, b),  r e f e r r e d  to  h e n c e f o r t h  as p a p e r s  I a n d  I I .  

t Spec ia l  c a r e  s h o u l d  b e  t a k e n  to  k e e p  the averaging c o r r e c t  
m o d u l o  27r. 

where index r denotes the order of moment and index 
j the region of magnitudes. Summation runs over all 
seminvariant values in the j th region. 

Starting from the second moments, the central 
moments possess a simpler geometrical meaning. The 
second central moment of the conditional distribution 
pemp(~P'IRj) is denoted by - e m p  m2j = var ( l / t ) ;  mp and 
calculated using the seminvariant values ~ of the 
tested set of phases 

m e m p _  v a r  (1/¢)~ -mp = " e m p _  2j ,~2~ (,?~n,y. (2) 

The third central moment of the distribution P(~IRj)  
is calculated by 

memp _ • emp _ "2,. emp • • emp 
3j - - P ' 3 j  "-'P'2j ~ l j  + 2 ( / - t ~ ? P )  3- ( 3 )  

The higher central moments may be computed 
similarly. Distributions of centric seminvariants are 
fully described by the first moments only, i.e. by 

. t emp  __ Nlj~l j  + N2j~:j 
l j  

NIj + N2j 

values, where NIj, N2j are the numbers of 
seminvariants assuming the values ag~j or ~2j, respec- 
tively. If the tested seminvariant type is a linear com- 
bination of phases, then ag2j = 0 and 

/t~ e m p ~  N u /  ( N U + N2j)rff u / ' ) emplD '  lj  ~- ~ lj : r l j  

and for cosine seminvariants simply 
j~emp /-)emp 

lj  ~ ~ l j  , 

where Q~)np is the relative frequency of seminvariants 
in thej th  region (see § 2 of paper II). All seminvariant 
values in a single interval may be approximated by 
the mid-point of the interval ~o. The moment calcula- 
tion (1) is thus simplified to 

/L/,; mp---~" N~ -~ ~ Non,j ,  (4) 
i=1 

where r is the order of the moment, Nq is the number 
of seminvariants in the ith interval and j th  region of 
magnitudes and summation runs over all s intervals. 

There are several semi-empirical rules for forma- 
tion of the seminvariant intervals. Without consider- 
ing the actual shape of the theoretical distribution, 
the intervals are recommended to be equidistant and 
their number is given by some of the following rules: 

r -< 5 log/Vj 

(5) 
r -  1 +3-3 log Nj, 

where n is the sample size. 
The use of the mid-points of intervals instead of 

the actual empirical seminvarant  values simplifies 
the calculations at the expense of some accuracy. 
Supposing equidistant intervals, unimodal sym- 
metrical distribution and a large sample size Nj > 500, 
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the bias of the central moments of the even order can 
be corrected using 

m[ = m 2 - -  h 2 / 1 2  
(6) 

ml4 = m4-- h2m2/2 +7h4/240, 

where h is the length of equidistant intervals. The 
mean is assumed to be unbiased with maximum 
possible error h/2. 

3. Moments of  the theoretical distribution of  
seminvariants 

The moments of the conditional distribution P(qtlRj) 
are given by 

theor  ~o -~ q'rP(g'lR~)dq" (7) 

However, since in practice the regions of magni- 
tudes are usually rather wide, one of the following 
three approximations has to be used to estimate the 
theoretical quantities approximating the empirical 
distribution moments tz 0 for a correct set of phases. 

Supposing a uniform distribution of seminvariants 
in the j th  region of magnitudes, the first moment may 
be estimated using the relation 

theor  tz,j =.[j" qtP(g'lR)dg' dR, (8a) 

where the integration proceeds over all seminvariant 
values and over the whole j th region. If it is imprac- 
tical to ensure a uniform choice of seminvariants in 
the whole region, then it is better to estimate the 
theoretical moment in the j th region as the average 
value of moments for all seminvariant values in the 
j th region 

theor  1 ~,, - ' ~ $  ,/tP(,/tlRDdqt, (8b) 
] 

where the summation runs over all the Nj 
seminvariants in the j th  region of magnitudes and 
integration over all possible seminvariant values. In 
many cases it is sufficient to estimate the first moment 
using the simple relation 

/~heor = s $ gtP(gti(Rb) d g', (8c) 
where the conditional probability distribution is 
calculated for the average magnitude (R)j in the j th 
region. 

The higher moments may be calculated similarly 
using the following relations: 

theor  P'O = ~  gtrP(gt, R) d g t d R  (9a) 

t h e o r .  1 V" 
~,s = ~ z i . d J  ~ ' P ( ~ l R , ) d g "  (9b) 

]£theor__ [ ~,p(~,l(nb) dr , ,  (9c) rj --.I 

where all symbols used have the same meaning as in 
(8). The central moments m 'he°r, cumulants k~ e°r or 
standardized cumulants At~ e°' may be calculated 
using simple relations. 

In the case of centric seminvariants, (9c) may be 
rewritten for r = 1 as 

theor = gt+p(gt+ (g)~) + gt_[l - P(gt+ (g)j)], 

where gt+(gt)  denote the seminvariant values corre- 
sponding to the positive (negative) signs of the re- 
spective product of the structure factors. If cosine 
seminvariants are used, then gt_ = 0 and 1/,+ = 1 and 

/.~heor = p(~F+ (R)j). 

By analogy, relations (9a) and (9b) may also be sim- 
plified. The distribution moments of seminvariants of 
order r >  1 give no additional information for cen- 
trosymmetric structures because they may be simply 

theor derived from the first moment/~ tj • 

4. Distribution fitting using the distribution moments 

Using the same arguments as in paper II, the empirical 
distribution of seminvariants for the correct set of 
phases of structure factors and for an increasing num- 
ber of randomly selected seminvariants converges to 
the true distribution of seminvariants, which is 
assumed to be well approximated by the theoretical 
distribution. Thus, the correct set of phases may be 
looked for according to the fit between the trial and 
the theoretical distributions. The distribution func- 
tion is unambiguously determined by its characteristic 
function and thus also by an infinite set of distribution 
moments. Furthermore, the main characteristics of 
unimodal distributions may be satisfactorily 
described by several first moments. Thus, the correct 
set of phases is expected to have the empirical distri- 
bution moments of low orders very close to the 
theoretically derived moments (Hagek, 1980). 

Instead of moments, a number of simpler distribu- 
tion characteristics of location, dispersion, asym- 
metry and excess may be used. Unlike the distribution 
moments, these characteristics usually do not reflect 
the whole profile of the distribution. Therefore, such 
criteria should be chosen carefully according to the 
expected distribution profile. Generally, they are sim- 
pler but less sensitive to the distribution profile than 
the moments. 

4.1. Method of successive comparison of  the individual 
distribution characteristics 

One of the possible procedures in looking for the 
best fit between the trial and theoretical distributions 
is the successive testing of differences between the 
individual distribution characteristics. If the differ- 
ence between the trial and theoretical values of any 
characteristic is larger than a defined limit, the tested 
set of phases is rejected. Confidence limits for the 
individual seminvariant types, regions of magnitudes 
and distribution characteristics are usually taken 
empirically. However, in the case where the two first 
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moments are taken as the only distribution charac- 
teristics, the following well known statistical pro- 
cedures may be used for a rough estimate of these 
limits. 

Suppose for simplicity that the theoretical distribu- 
tion p t h e ° r ( a / t ,  R) fits exactly the true distribution of 
seminvariants ptrue(aIt ,  R ) .  Then a hypothesis that the 
true distribution and the trial distribution for the 
tested set of phases have the same mean if the true 
variance is known, and a hypothesis that they have 
the same variance assuming that the true mean is 
known may be tested (Hamilton, 1964). 

(a) First distribution moment. The theoretical esti- 
mate of the true variance theor- m2 Is known and we wish 
to test the hypothesis Ho:/z~ rial=/z~ he°r on the basis 
of a sample of N randomly chosen seminvariants 
with a sample mean ,. sample ~l  against the alternative 
• • . trial - -  theor  r~l./x I ~=/x i . I ne random variable 

W - -  ( / £ ] a m p l e  theorx ~ / ~ r .  theor  
-- --/,L 1 W l v / m  2 

has a normal distribution N(0, l) and therefore the 
hypothesis H0 is rejected at the 100a% significance 
level if 

Iwl > w~/2, 

where the 100a percentage points w,,/2 of the normal 
distribution are given by the following table (Bickel 
& Doksum, 1977): 

w,~/2 1-96 2.58 2.81 3.29 3.89 
lOOa 5% 1% 0-5% 0"1% 0"01%. 

Thus, if the sample mean/z]  ample does not lie in the 
interval 

/£~heor __ mt2heO, wo,/2/x/-~ < ]./,]ample 

< / £ ~ h e o r  + theor  - ~/'~"~ 
m2 Wa/2/~] I~ , 

the tested phase set is rejected. 

(b) Second central distribution moment. Similarly, 
the 100a% confidence interval for variance may be 
established. Random variable 

X 2 = ( N x / " ~  I m[ample/mtghe°r)  2 

is distributed as x 2 with N - 1  degrees of freedom. 
The hypothesis /40: m~ al _ theor = m E is  then rejected at 
the 100a% significance level in favour of the 
hypothesis Hi" m2- trial # m~heor if 

X 2 2 
< X N - I , a / 2  

o r  

2 
X 2 >  X N _ l , l _ o t / 2  , 

where percentage points 2 x 2 xN,~ of the distribution 
defined by the relation 

"~* ~ (x  2) dx 2 = 1 - t~ 
0 

are extensively tabulated (e.g. Hamilton, 1964; Bickel 
& Doksum, 1977). This means that the phase set is 
not rejected only if 

theor  2 m ~ a m p l e  
m 2  XN_I,ot/2/Nf-N-- 1 < 

theor  2 ~ 1  ~ -  < m2 XN-I.I-,~/2/"IN--1. 

In practice, of course, the theoretical estimate of 
the probability distribution, especially in some 
regions of magnitude, does not correspond to the true 
distribution. Therefore, in order not to reject 
occasionally the correct set of phases, it is necessary 
to increase the range of confidence limits according 
to the distribution type and region. It can therefore 
be expected that at the end of the outlined procedure 
several sets of phases will not be rejected. The most 
probable set of phases can then be determined using 
some of the following criteria: 

(1) according to the minimal weighted sum of 
.squared differences between the individual charac- 
teristics of empirical and theoretical distributions 
(§4.2); 

(2) using the x 2 test (see paper II, § 4); 
(3) by eliminating those trial sets that have 

maximal values of 
R = min r, trial theorx/ theon 

L(l£ijk - - /£ i jk  )/~l,  ijk J (10) 

taken for all regions of magnitudes (index j), all 
seminvariant types (index k) and all the tested 
moment orders i. 

4.2. The global coefficient of  the distribution fitting 
using moments 

In the last paragraph, some criteria were described 
which enable us to delete the sets of phases, the 
characteristics of which significantly deviate from the 
theoretical ones. However, a unique criterion which 
evaluates the fit of all distributions using the moments 
of all seminvariant types by only one coefficient is 
more useful. A number of different norms may be 
proposed to describe differences between the two 
characteristic functions. One of them is the coefficient 
(Ha~ek, 1975) 

M =  ~ WOk E - ," trial theory2 Wijkq, i~ijk -- [dl, ijk ) ,  (11) 
J J 

where k denotes different types of seminvariants, j 
the region of magnitudes and i the order of the 
respective moment. The weights WOk generally depend 
on the importance and reliability of moments of 
different orders, on the number of seminvariants in 
the corresponding regions and on the type of distribu- 
tion of seminvariants used. For weights known only 
on a relative scale, the coefficient M is normalized 
by dividing by the sum of all the weights used. The 
minimal value of the coefficient M denotes the set of 
phases which is expected to be the correct one with 
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the highest probability. Principal information on both 
distributions is contained in the low-order moments. 
Furthermore, the uncertainty in the determination of 
moments increases with their order and decreases 
with the number of seminvariants used in the calcula- 
tion. Therefore, the weights should strongly reduce 
the influence of the moments of higher orders depend- 
ing on the index i. The weights should be smaller, 
the smaller the number of seminvariants used for the 
calculation of ~,L e m p  and the more restrictive the 
approximations used in the calculation of the corres- 
ponding theoretical distributions. The decrease in the 
weights* with the order of moments might be approxi- 
mately expressed by the coefficient (n !)-t 

Special seminvariants 

In the case of special seminvariants, which owing 
to the crystallographic symmetry may assume only 
two values, the distributions are fully described only 
by their first moments. Hence, the summation over 

* The weights should be properly modified when cumulants, 
standardized cumulants or other types of distribution characteris- 
tics are used. 

index i in (11) is omitted and the distribution-fitting 
coefficient is 

M = ~ )-', . t r ia l  t heor ' x2  
Wjk~[~L ljk -- ]'£ Ijk ) • (12) 

j k 

If centric cosine seminvariants are used, then 
/emp= oemp [compare with equation (7) of paper II] Ijk ~t ljk 
and the distribution-fitting coefficient M for one type 
of seminvariant may be written in the form equivalent 
to equation (19) in paper II: 

N : ~, Wj~I'+j" ntriai --~' +jpthe°r'~2J" (13) 
J 

References 

BICKEL, P. J. & DOKSUM, K. A. (1977). Mathematical  Statistics: 
Basic Ideas and Selected Topics. San Francisco: Holden-Day. 

DE TITTA, G. T., EDMONDS, J. W., LANGS, D. A. & HAUPTMAN, 
H. (1975). Acta Cryst. A31,472-479. 

HAMILTON, W. C. (1964). Statistics in Physical Science. New York: 
Ronald Press. 

HA~EK, J. (1975). Acta Cryst. A31, 818-819. 
HA~EK, J. (1980). In Proceedings of the Symposium on Special Topics 

of X-ray Crystal Structure Analysis, pp. 108-11 I. Zentralinstitut 
fiir Physikalische Chemic AW, German Democratic Republic. 

HA~EK, J. (1984a). Acta Cryst. A40, 338-340. 
HA~EK, J. (1984b). Acta Cryst. A40, 340-346. 
SCHENK, H. (1974). Acta Cryst. A30, 477-481. 

Acta Cryst. (1984). A40, 350-352 

On the Solution of the Phase Problem. 
IV.* Distributions Fitted using the Kolmogorov Test 

By J. HA~EK 

Institute of  Macromolecular Chemistry, Czechoslovak Academy of  Sciences, 162 06 Prague 6, Czechoslovakia 

(Received 1 October 1982; accepted 3 January 1984) 

Abstrac t  

The proposed method of determination of a correct 
set of phases is based on a comparison between the 
trial and theoretical distributions of seminvariants 
using the Kolmogorov test. If the Kolmogorov test is 
restricted to a single region of magnitudes where only 
a small variance around the mean seminvariant value 
is expected, then the test is reduced to a simple rule. 
The smaller the number of  seminvariants differing sig- 
nificantly from the expected mean value, the more prob- 
able the set of  phases. In this simple form the Kol- 
mogorov test has been used since the very beginnings 
of direct methods. In spite of the fact that the method 
seems to be less efficient than the distribution fitting 
using the x 2 test [HMek (1984). Acta Cryst. A40, 

* Part III: Ha~ek (1984c). 
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340-346], its simplicity and low claim on computing 
time enables one to survey a large number of trial 
sets and so to increase the power of the method based 
on a combination of the Kolmogorov test with the x 2 
test, or with the low-order distribution moment test. 

1. Introduct ion  

In direct methods, a priori information on the struc- 
ture necessary for the phase-problem solution is 
usually represented by 'probability relations' between 
the structure factors, i.e. by the function form of the 
probability distributions of seminvariants. Of course, 
some methods extract only information on the most 
probable seminvariant values and do not account for 
the fact that the probability distribution defines also 
seminvariants which must greatly differ from their 
'ideal' value. This results in occasional failures of 
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